

Introduction to Programming in MATLAB

User - defined Functions

Å Functions look exactly like scripts, but fo r ON E difference

â Functions must have a function declaration

Help file

Outputs

Inputs

Function declaration

User - defined Functions

Å Some comments about the function declaration

Inputs must be specified

function [x, y, z] = fu nName (in1 , in2)

Must have the reserved
word: function

Function name should
matc h MATLAB file
name

If more than one output,

must be in brackets

Å No need for return : MATLAB 'returns' the variables whose
names match those in the function declaration

Å Variable scope : Any variables created within the function
bu t not returned disappear after the function stops running

Functions: overloading

Å We're familiar with
» zeros

» size

» length

» sum

Å Look at the help file for size by typing
» help size

Å The help file describes several ways to invoke the function

â D = SIZE(X)

â [M,N] = SI ZE(X)

â [M1,M2,M3,...,MN] = SIZE(X)

â M = SIZE(X,DIM)

Functions: overloading

Å MATLAB functions are generally overloaded

â Can take a variable number of inputs

â Can return a variable number of outputs

Å What would the following commands return:

» a=zeros(2,4,8); %n - dimensional matrices are OK

» D=size(a)

» [m,n]=size(a)

» [x,y,z]=size(a)

» m2=size(a,2)

Å You can overload your own functions by having variable
input and output arguments (se e varargin , nargin ,

varargout , nargout)

Functions: Excercise

Å Write a function with the following declaration:
function plotSin(f1)

Å In the function, plot a sin wave with frequency f1, on the

range [0,2]̫: sin (f1 x)

Å To get good sampling, use 16 points per period.

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

0 1 2 3 4 5 6 7

Relational O perators

Å MATLAB uses mostly standard relational operators

â equa l ==

â no t equa l ~=

â greater tha n >

â less tha n <

â greater or equa l >=

â less or equa l <=

Å Logical operator s elem ent wise short -circuit

â And & &&

â Or | | |

â No t ~

â Xor xor

â All tru e all

â Any true any

Å Boolean values: zero is false, nonzero is true

Å See help . for a detailed list of oper ators

if/else/elseif

Å Basic flow -control, common to all languages

Å MATLAB syntax is somewhat unique

IF

if cond

if cond

ELSE

ELSEIF

if cond1

commands

end

Conditional statement:

evaluates to true or false

commands1

else

commands2

end

commands1

elseif cond2

commands2

else

comma nds3

end

Å No need for parentheses : command blocks are between
reserved words

for

Å fo r loops: use for a known number of iterations

Å MATLAB syntax:
Loop variable

fo r n=1:100

commands

end

Command block

Å The loop variable

â Is defined as a vect or

â Is a scalar within the command block

â Does not have to have consecu t ive values (but it's usually
cleaner if they're consecutive)

Å The command block

â Anything between the for line and the end

while

Å The while is like a more general for loop:

â Don't need to know number of iterations

WHILE

while cond
commands

end

Å The command block will execute while the conditional
expression is true

Å Beware of infinite loops!

Exercise: Conditionals

Å Modi fy your plotSin(f1) function to take two inputs: plotSin(f1,f2)

Å If the number of input arguments is 1, exe cute the p lot comm and
you wrote before. Other wise, display the line 'Two inputs were
given'

Å Hint: the number of input ar guments are in the bui lt - in v ariable
nargi n

Plot Options

Å Can change the line color, marker style, and line style by
adding a string argument

» plot(x,y,ôk.- ô);

color marker line-style

Å Can plot without connecting the dots by omitting line style
argument

» plot(x,y,ô.ô)

Å Look at help plot for a full list of colors, markers, and
linestyles

Playing with the Plot

to select lines
and delete or
change
properties

to zoom in/out

to slide the plot
around

to see all plot
tools at once

Line and Marker Options

Å Everything on a line can be customized

» plot(x,y,' -- s','LineWidth',2,...

'Color', [1 0 0], ...

'MarkerEdgeColor','k',...

'MarkerFaceColor','g',...

'MarkerSize ',10)

You can set colors by using

a vector of [R G B] values or

a predefined color character

like 'g', 'k', etc.

0.8

0.6

0.4

0.2

0

Å See doc l ine _props for a full list of
prope rties that can be specified

-0.2

-0.4

-0.6

-0.8
-4 -3 -2 -1 0 1 2 3 4

Cartesian Plots

Å We have already seen the plot fun ction

» x=- pi:pi/100:pi;

» y=cos(4*x).*sin(10*x).*exp(- abs(x));

» plot(x,y,'k - ');

Å The same syntax applies for semilog and loglog plots

» semilogx(x,y,'k') ;
» semilogy(y,'r. - ');

» loglog(x,y);

Å For example:

» x=0:100;

» semilogy(x,exp(x),'k. - ');

3D Line Plots

Å We can plot in 3 dimensions just as easily as in 2

» time=0: 0.001:4*pi;

» x=sin(time);

» y=cos(time);

» z=time;

» plot3(x,y,z,'k','LineWidth',2);

» zlabel('Time');

Å Use tools on figure to rotate it

Å Can set limits on all 3 axes

» xlim, ylim, zlim

10

5

0

-5

-10

1

0.5

0

-0.5

-1 -1

0

-0.5

1

0.5

Axis Modes

Å Built - in axis modes

» axis square

â m akes the curren t axis look like a box

» axis tight

â fits axes to data

» axis equal

â makes x and y scales the sam e

» axis xy

â puts the origin in the bottom left corner (default for plots)

» axis ij

â puts the origin in the top left corner (default for
matrices/images)

Multiple Plots in one Figure

Å To have multiple axes in one figure
» subplot(2,3,1)

â makes a figu re with 2 rows and three columns of axes, and
activates the first axis for plotting

â each axis can have labels, a legend, and a title

» subplot(2,3,4:6)

â activating a range of axes fuses them into one

Å To close existing figures
» close([1 3])

â closes figures 1 and 3

» close all

â closes all figures (useful in scripts/functions)

Copy/Paste Figures

Å Figures can be pasted into other apps (word, ppt, etc)

Å Editê copy option sê figure copy template

â Change font sizes, line prope rti es; presets for word and ppt

Å Editê copy figure to copy figure

Å Paste into document of interest

Saving Figures

Å Figures can be saved in many formats. The common ones
are:

.fig preserves all
information

.bm p uncompressed
image

.eps high -quality
scaleabl e format

.pdf compressed
image

Advanced Plotting: Exercise

Å Modify the plot command in your plotSin function to use
squares as markers and a dashed red line of thickness 2
as the line. Set the marker face color to b e black
(pro perties ar e LineWidth , MarkerFaceColor)

Å If there are 2 inputs, open a new figure with 2 axes, one on
top of the other (not side by side), and activate the top one

(subplot)

plotSin(6) plotSin(1,2)

1 1

0.8

0.8

0.6

0.4

0.6

0.4

0.2

0.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

-0.2

-0.4

-0.6

-0.8

-1

0 1 2 3 4 5 6 7

Visualizing matrices

Å Any matrix can be visualized as an image
» mat=reshape(1:10000,100,100);

» imagesc(mat);

» colorbar

Å imagesc automatically scales the values to span the e ntire
color map

Å Can set limits for the color axis (analogous t o xlim , ylim)

» caxis([3000 7000])

Color maps

Å You ca n change t he colo r m ap:

» imagesc(mat)

â default map is jet

» colormap(gray)

» colormap(cool)

» colormap(hot(256))

Å See help hot for a list

Å Can define custom color map

» map=zeros(256,3);

» map(:,2)=(0:255)/255;

» colormap(map);

Surface Plots

Å It is more common to visualiz e surface s in 3D

Å Examp le:

Å surf puts vertices at specified points in space x,y,z, and
connects all the vertices to make a surface

Å The vertices can be denoted by matrices X,Y,Z

3

2

Å How can we make these matrices
2

4

â loop (DUMB)
6

8

10

12

â built - in function: meshgrid

surf

Å Make the x and y vectors
» x=- pi:0.1:pi;

» y=- pi:0.1:pi;

Å Use meshgrid to make matrices (thi s is the same as loop)
» [X,Y]=meshgrid(x,y);

Å To get function values,
evaluate the matrices

» Z =sin(X).*cos(Y);

Å Plot the surface
» surf(X,Y,Z)

» surf(x,y,Z);

surf Options

Å See help surf for more options

Å There are three types of surfa ce shading

» shading faceted

» shading flat

» shading interp

Å You can change colormaps

» colormap(gray)

contour

Å You can make surfa ces two -dimensional by using contour

» contour(X,Y,Z,'LineWidth',2)

â takes same arguments as surf

â color indicates height

â can modify linestyle properties

â can set colormap

» hold on

» mesh(X,Y,Z)

Exercise: 3 - D Plots

Å Modi fy plotSin to do the follo wing:

Å If two inputs are given, evaluate the following f unction:

Å y should be just like x, but using f2 . (us e meshgrid to get

the X and Y matrices)

Å In the top axis of your subplot, display an imag e of th e Z

matrix . Displ ay the colorbar and use a hot colormap. Set

the axis to xy (imagesc , colormap , colorbar , axis)

Å In the bottom axis of the subplot, plot the 3 -D surface of Z
(surf)

Ex ercise: 3 - D Plots

plotSin(3,4) generates this figure

2

6

5

1

4

3 0

2

-1

1

0 -2

0 1 2 3 4 5 6

2

0

-2
8

6 7
6

4
4

5

2 2
3

00
1

Specialized Plotting Functions

Å MATLAB has a lot of specialized plotting functions

Å polar - to make polar plots
» polar(0:0.01:2*pi,cos((0:0.01:2*pi)*2))

Å bar - to make bar graphs
» bar(1:10,rand(1,10));

Å quiver - to add velocity vectors to a plot
» [X,Y]=meshgrid(1:10,1:10);

» quiver(X,Y,rand(10),rand(10));

Å stair s-plot piecewise constant functions
» stairs(1:10,rand(1,10));

Å fill -draws and fills a poly gon with specified vertices
» fill([0 1 0.5],[0 0 1],'r');

Å see help on these functions for syntax

Å doc specgraph ï for a complet e list

Revisiting find

Å find is a very important function

â Retur ns indices of n onze ro values

â Can simplify code and help avoid loops

Å Basic syntax: index=find(cond)

» x=rand(1,100);

» inds = find(x>0.4 & x<0.6);

Å inds will contain the indices at which x has values between

0.4 and 0.6. This is what happens:

â x>0.4 returns a vector with 1 where true and 0 where false

â x<0.6 retu rns a similar vector

â The & combines the two vectors using an and

â The find retu rns the indices of the 1's

Example: Avoiding Loops

Å Given x= sin(lin spac e(0,10*pi ,100)), how many of the
entries are positive?

Using a loop and if/else

count=0;

fo r n=1:length(x)

if x(n) > 0

count=count+1;

end

end

Being more clever

count=length(find(x>0));

length(x) Loop tim e Find time

10 0 0.0 1 0

10,00 0 0. 1 0

100,00 0 0.2 2 0

1,000,00 0 1. 5 0.04

Å Avoi d loops!
Å Built - in functions will make it faster to write and execute

Efficient Code

Å Avoid loops

â This is referred to as vectorization

Å Vectorized code is more efficient for MATLAB

Å Use indexing and matrix operations to avoid loops

Å For example, to sum up every two consecutive terms:

» a=rand(1,100);

» b=zeros(1,100);

» for n=1:100

» if n= =1

» b(n)=a(n);

» else

» a=rand(1,100);

» b=[0 a(1:end - 1)]+a;

â Efficient and clean.

Can also do this using
conv

» b(n)=a(n - 1)+a(n);

» end

» end

â Slow and complicated

