Data Communications

Data Link Layer Protocols Wireless LANs

Wireless Networks

- Several different types of communications networks are using unguided media.
- These networks are generally referred to as wireless networks
- Wireless networks are available in small, medium and large sizes

Characteristics of wireless LANs

• Advantages

- very flexible
- Ad-hoc networks without previous planning possible
- (almost) no wiring difficulties (e.g. historic buildings, firewalls)
- more robust against disasters like earthquakes, fire, ...
- Disadvantages
 - typically very low bandwidth compared to wired networks (1-10 Mbit/s) due to shared medium
 - many proprietary solutions, especially for higher bit-rates, standards take their time (e.g. IEEE 802.11n)
 - products have to follow many national restrictions if working wireless, it takes a vary long time to establish global solutions

Comparison: infrared vs. radio transmission

- Infrared
 - uses IR diodes, diffuse light, multiple reflections (walls, furniture etc.)
- Advantages
 - simple, cheap, available in many mobile devices
 - no licenses needed
 - simple shielding possible
- Disadvantages
 - interference by sunlight, heat sources etc.
 - many things shield or absorb IR light
 - low bandwidth
- Example
 - IrDA (Infrared Data Association) interface available everywhere

- Radio
 - typically using the license free ISM band at 2.4 GHz
- Advantages
 - experience from wireless WAN and mobile phones can be used
 - coverage of larger areas possible (radio can penetrate walls, furniture etc.)
- Disadvantages
 - very limited license free frequency bands
 - shielding more difficult, interference with other electrical devices

Infrastructure vs. ad-hoc networks

802.11 - Architecture of an infrastructure network

- Station (STA)
 - terminal with access mechanisms to the wireless medium and radio contact to the access point
- Basic Service Set (BSS)
 - group of stations using the same radio frequency
- Access Point
 - station integrated into the wireless LAN and the distribution system
- Portal
 - bridge to other (wired) networks
- Distribution System
 - interconnection network to form one logical network (EES: Extended Service Set) based on several BSS

802.11 - Architecture of an ad-hoc network

- Direct communication within a limited range
 - Station (STA):
 - terminal with access mechanisms to the wireless medium
 - Independent Basic Service Set (IBSS):
 - group of stations using the same radio frequency

Motivation

- Can we apply media access methods from fixed networks?
- Example CSMA/CD
 - Carrier Sense Multiple Access with Collision Detection
 - send as soon as the medium is free, listen into the medium if a collision occurs (legacy method in IEEE 802.3)
- Problems in wireless networks
 - signal strength decreases proportional to the square of the distance
 - the sender would apply CS and CD, but the collisions happen at the receiver
 - it might be the case that a sender cannot "hear" the collision, i.e., CD does not work
 - furthermore, CS might not work if, e.g., a terminal is "hidden"

Motivation - hidden and exposed terminals

- Hidden terminals
 - A sends to B, C cannot receive A
 - C wants to send to B, C senses a "free" medium (CS fails)
 - collision at B, A cannot receive the collision (CD fails)
 - A is "hidden" for C

- Exposed terminals
 - B sends to A, C wants to send to another terminal (not A or B)
 - C has to wait, CS signals a medium in use
 - but A is outside the radio range of C, therefore waiting is not necessary
 - C is "exposed" to B

Motivation - near and far terminals

- Terminals A and B send, C receives
 - signal strength decreases proportional to the square of the distance
 - the signal of terminal B therefore drowns out A's signal
 - C cannot receive A

- If C for example was an arbiter for sending rights, terminal B would drown out terminal A already on the physical layer
- Also severe problem for CDMA-networks precise power control needed!

Medium Access Methods in IEEE 802.11

- Three medium access methods are supported by IEEE 802.11
 - (Distributed Foundation Wireless MAC with Distributed Coordination Function using Carrier Sense, Multiple Access with Collision Avoidance)

DFWMAC-DCF CSMA/CA

 – (Distributed Foundation Wireless MAC with Distributed Coordination Function using Request To Send/Clear To Send Messages)

DFWMAC-DCF w/ RTS/CTS

 – (Distributed Foundation Wireless MAC Point Coordination Function)

DFWMAC-PCF

802.11 - MAC layer I - DFWMAC

- Access methods
 - DFWMAC-DCF CSMA/CA (mandatory)
 - collision avoidance via randomized "back-off" mechanism
 - minimum distance between consecutive packets
 - ACK packet for acknowledgements (not for broadcasts)
 - DFWMAC-DCF w/ RTS/CTS (optional)
 - Distributed Foundation Wireless MAC
 - avoids hidden terminal problem
 - DFWMAC- PCF (optional)
 - access point polls terminals according to a list

802.11 - MAC layer II

- Priorities
 - defined through different inter frame spaces
 - no guaranteed, hard priorities
 - SIFS (Short Inter Frame Spacing)
 - highest priority, for ACK, CTS, polling response
 - PIFS (PCF IFS)
 - medium priority, for time-bounded service using PCF
 - DIFS (DCF, Distributed Coordination Function IFS)
 - lowest priority, for asynchronous data service

802.11 - CSMA/CA access method I

- station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment)
- if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type)
- if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time)
- if another station occupies the medium during the back-off time of the station, the back-off timer stops (fairness)

802.11 - CSMA/CA access method II

- Sending unicast packets
 - station has to wait for DIFS before sending data
 - receivers acknowledge at once (after waiting for SIFS) if the packet was received correctly (CRC)
 - automatic retransmission of data packets in case of transmission errors

802.11 - DFWMAC

- Sending unicast packets
 - station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium)
 - acknowledgement via CTS after SIFS by receiver (if ready to receive)
 - sender can now send data at once, acknowledgement via ACK
 - other stations store medium reservations distributed via RTS and CTS

Fragmentation

DFWMAC-PCF I (almost never used)

DFWMAC-PCF II

802.11 - MAC Management

- Synchronization
 - try to find a LAN, try to stay within a LAN
 - timer etc.
- Power management
 - sleep-mode without missing a message
 - periodic sleep, frame buffering, traffic measurements
- Association/Re-association
 - integration into a LAN
 - roaming, i.e. change networks by changing access points
 - scanning, i.e. active search for a network
- MIB Management Information Base
 - managing, read, write

Synchronization using a Beacon (with infrastructure)

Synchronization using a Beacon (ad-hoc)

Power management

- Idea: switch the transceiver off if not needed
- States of a station: sleep and awake
- Timing Synchronization Function (TSF)
 - stations wake up at the same time
- Infrastructure
 - Traffic Indication Map (TIM)
 - list of unicast receivers transmitted by AP
 - Delivery Traffic Indication Map (DTIM)
 - list of broadcast/multicast receivers transmitted by AP
- Ad-hoc
 - Ad-hoc Traffic Indication Map (ATIM)
 - announcement of receivers by stations buffering frames
 - more complicated no central AP
 - collision of ATIMs possible (scalability?)

Power saving with wake-up patterns (infrastructure)

Power saving with wake-up patterns (ad-hoc)

802.11 - Roaming

- No or bad connection? Then perform:
- Scanning
 - scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer
- Re-association Request
 - station sends a request to one or several AP(s)
- Re-association Response
 - success: AP has answered, station can now participate
 - failure: continue scanning
- AP accepts Re-association Request
 - signal the new station to the distribution system
 - the distribution system updates its data base (i.e., location information)
 - typically, the distribution system now informs the old AP so it can release resources

802.11 - Frame format

- Types
 - control frames, management frames, data frames
- Sequence numbers
 - important against duplicated frames due to lost ACKs
- Addresses
 - receiver, transmitter (physical), BSS identifier, sender (logical)
- Miscellaneous
 - sending time, checksum, frame control, data

byte	es 2	2	6		6		6	2		6	0-2312	2 4
	Frame Control	Duratic ID	on/ Addr 1	ess	Addre 2	ess Ad 3	dress	Sequer Control	nce Ad 4	dress	Data	CRC
									•	•		
bits	2	2	4	1	1	1	1	1	1	1	1	
	Protocol version	Туре	Subtype	To DS	From DS	More Frag	Retry	Power Mgmt	More Data	WEP	Order	

MAC address format

scenario	to DS	from DS	address 1	address 2	address 3	address 4
ad-hoc network	0	0	DA	SA	BSSID	-
infrastructure network, from AP	0	1	DA	BSSID	SA	-
infrastructure network, to AP	1	0	BSSID	SA	DA	-
infrastructure network, within DS	1	1	RA	ТА	DA	SA

- DS: Distribution System
- **AP: Access Point**
- **DA: Destination Address**
- SA: Source Address
- **BSSID: Basic Service Set Identifier**
- **RA: Receiver Address**
- **TA: Transmitter Address**

Special Frames: ACK, RTS, CTS

	by	ytes	2	2	6	4	
•	Acknowledgement ACK	Fr Co	ame ontrol	Duration	Receiver Address	CRC	

		byte	es 2	2	6	6	4
•	Request To Send	RTS	Frame Control	Duration	Receiver Address	Transmitter Address	CRC

		byte	es 2	2	6	4
•	Clear To Send	CTS	Frame Control	Duration	Receiver Address	CRC

Questions?